The computational aspect of the SCLAE-LETKF data assimilation system for rapid-update-cycle, high-resolution radar data assimilation

Guo-Yuan Lien, Seiya Nishizawa, Ryuji Yoshida, Hisashi Yashiro, Tatiana Martsinkevich, Takumi Honda, Shigenori Otsuka, Takemasa Miyoshi, Hirofumi Tomita, and Yutaka Ishikawa RIKEN Center for Computational Science, Kobe, Japan

Introduction

- We have developed the SCALE-LETKF (Lien et al. 2017) regional data assimilation (DA) system for research.
- It utilizes the Scalable Computing for Advanced Library and Environment-Regional Model (SCALE-RM; Nishizawa et al. 2015; Sato et al. 2015) model and the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al. 2007).
- https://github.com/gylien/scale-letkf

Comparison of community DA code for research

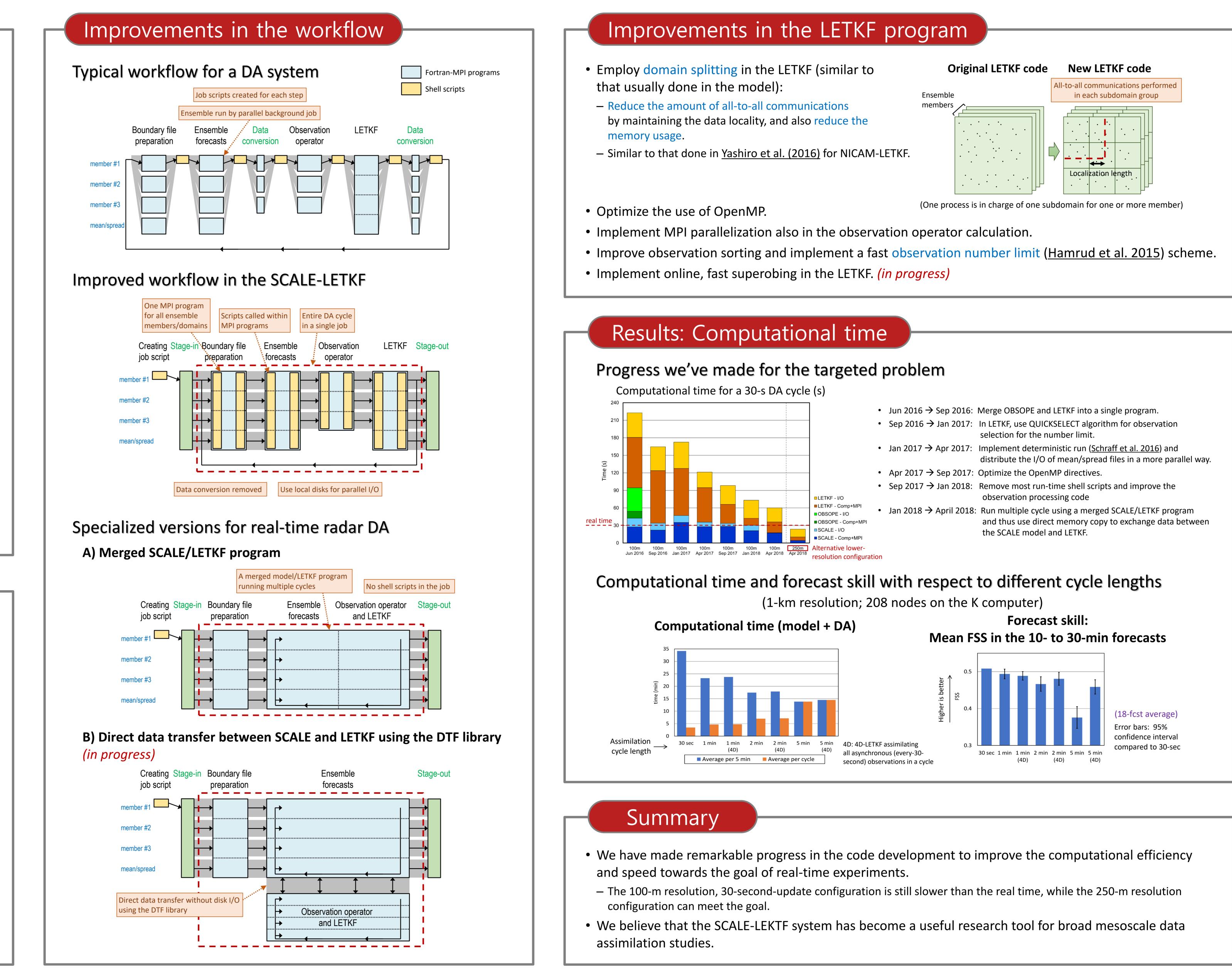
		WRFDA	Community GSI/EnKF	DART	SCALE-LETKF
Developer team		Mesoscale and Microscale Meteorology (MMM) Laboratory/ NCAR (U.S.)	Developmental Testbed Center (DTC)/ NCEP (U.S.)	Data Assimilation Research Section (DAReS)/ NCAR (U.S.)	RIKEN AICS
Assimilation algorithm		3DVar, 4DVar, Hybrid 3D/4DEnVar	3DVar, EnSRF, Hybrid 3D/4DEnVar	EAKF, EnSRF, Particle filter, etc.	LETKF
Supported models Regional			GFS	MPAS, CESM, etc.	
		WRF	WRF	WRF, etc.	SCALE
Supported observations		Conventional, satellite radiance, radar, GPSRO, etc.	Conventional, satellite radiance, radar, GPSRO, etc.	Conventional, radar, GPSRO, etc.	Conventional, radar, satellite radiance (partial)

- We aim to use the SCALE-LETKF to conduct real-time, rapid-updatecycle, high-resolution assimilation of Phased Array Weather Radar (PAWR) data.
- This requires very careful design in every part of the code to achieve high computational efficiency.

Targeted problem

• 30-second update cycle, 100-m model resolution, 100-member radar DA covering the radar observing range.

		Model do	omains		
40°N 30°N 20°N			D3	(100 m (1 km) (5 km)	30°N 20°N
110°E	120°E	130°E	140°E	150°E	160°E


K computer	
Total nodes	82,944
Cores / node	8
Memory / node	16 GB
Maximum disk space / node	29 GB

Highest resolution domain (D4)		
Model resolution	100 meters	
Cycle length	30 seconds	
Grid numbers	1200 x 1200 x 100	
Meteorological variables	11	
Ensemble members	100	
Total data dimension (number of variables)	1.6 x 10 ¹¹	
Total data size (Assume double-precision variables)	1.3 TB	

Observation	
Platform	Phased-Array Weather Radar (PAWR)
Highest resolution	100 meters
Frequency	30 seconds

This study was supported by CREST, JST and used computational resources of the K computer provided by the RIKEN Center for Computational Science (R-CCS) (Project ID: hp150019, hp160162, hp170178, hp180062, and ra000015). It was also supported by FOCUS Establishing Supercomputing Center of Excellence, the FLAGSHIP2020, MEXT within the priority study4 (Advancement of meteorological and global environmental predictions utilizing observational "Big Data"), and JSPS KAKENHI Grant Number 17K14396.

